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Supplementary Figures 

  
Supplementary Figure 1. Segmentation of the phase contrast x-ray nano-tomographic data. 

(a) shows a typical slice through the center of the electrode. (b) and (c) show the histograms over 

different regions on the image. The excellent image contrast offered by the quantitative phase 

contrast methodology enables the segmentation of the void, the CBD, and regions with low and 

high electron densities in the active particles ((d)) with good fidelity. The scale bar in (a) is 15 μm. 



 
Supplementary Figure 2. A depth dependent particle fracturing profile in Ni-rich NMC 

composite electrode revealed by X-ray nano-tomography data. The image is color coded to the 

local degree of morphological damage, which is quantified by evaluating the local concentration 

of crack surface. The scale bar is 20 μm. 

 

  



 
Supplementary Figure 3. Schematic drawing of the herein developed numerical model for 

calculating the diffusion pathways for electrons within the NMC particle. The particle is 

embedded in the porous CBD matrix and is partially detached from the CBD network. The void 

space is infiltrated by the liquid electrolyte, which favors the local lithium diffusion kinetics, but 

detours the electrons before they could reach the CBD network. The particle is color coded to the 

electron’s diffusion length and the white lines over the particle illustrate the local gradient of the 

diffusion length distribution which indicates the geometrical optimal diffusion path of the electron 

over the particle. We point out here that this schematic drawing shows a 2D scenario for easier 

presentation. Our actual calculation was conducted in the 3D space. Note that the model considers 

the NMC particle as a continuous solid and the electronic conductivity is uniform and isotropic in 

the particle. The scale bar is 3 μm. 

  



 
Supplementary Figure 4. Schematic illustration of the herein developed machine learning 

model based on the Mask R-CNN for particle identification and segmentation. The model 

facilitates the detection of over 650 active particles in our phase contrast tomographic result, which 

set the basis for our statistical analysis.  For the input slice, the residual neural network (ResNet) 

and feature pyramid network (FPN) are utilized as the backbone for feature extraction at different 

scales. After alignment of region-of-interest (RoI) with the extracted features, the head sub-

network predicts bounding boxes for particles and then segments the particle inside the predicted 

boxes as a binary mask.   



 
Supplementary Figure 5. Electrochemical data of the cells studied herein. The two cells were 

cycled under C/10 for the first cycle and 1C for the second cycle for an activation process. After 

that they were subjected to 10 cycles under 1C (a) and C/10 (b), respectively. We point out here 

that these mono layer electrodes have very low mass loading of 1 mg/cm2. The discrepancy in the 

initial capacity is likely caused by the experimental errors due to the low mass loading. 

 

  



 
Supplementary Figure 6. Schematic illustration of correlative imaging using both the phase 

contrast nano-tomography at the ESRF and the spectro-microscopy at the SSRL. A unique 

particle was imaged using both instruments. To facilitate such measurement, a small piece of NMC 

cathode electrode was mounted on top of a Huber pin, which is compatible with both instruments. 

 

  



 

 
Supplementary Figure 7. Schematic illustration of the data normalization procedure for 

calculating the projective maps of electron density and the Ni valence state. (a) illustrates the 

particle that was scanned using both phase contrast nano-tomography and the spectro-microscopy. 

(b) shows the normalization procedure for the electron density map, which takes away the 

thickness information from the projective data. (c) shows spectroscopic normalization procedure 

for the Ni valence map. The correlation between the electron density and the Ni edge energy is 

shown in (d). A reasonably good degree of similarity (Pearson correlation coefficient equals 0.54) 

is observed, confirming the positive correlation between the electron density and the Ni valence 

state and, thus, the local SoC. The scale bar in (a) is 8 μm. 

  



 

 
Supplementary Figure 8. Correlation plot of all the particles’ electron density versus their 

respective degree of detachment from the CBD. The intensity variation in the phase contrast 

reconstruction result for the Al current collector, CBD, and the NMC811 particles are shown on 

the right of the plot. The FWHMs of the Al and CBD are quantified to be around 0.053 and 0.064, 

respectively. These two values are likely related with the actual measurement accuracy as one 

wouldn’t anticipate density variation in Al. The FWHM of the NMC, on the other hand, is 

significantly larger (at ~0.147). This is likely due to the NMC’s charge heterogeneity and the fine 

porosity that is beyond the resolution limit of the x-ray phase contrast tomography 

 

 

 

 

 



 
 

Supplementary Figure 9. Active map of neural network and performance comparison 

between traditional and machine learning method. (a) The input image and its corresponding 

activation map by the network, which highlights the particles’ external boundaries. The emphasis 

of the particles’ external boundaries with simultaneous suppression of the crack surface is exactly 

the desired functionality of the auto segmentation algorithm. (b) Performance comparison in terms 

of mean values (the error bars are the corresponding standard deviations) over all validation images 

between the machine-learning neural network method and the traditional watershed algorithm with 

respect to six typical evaluation metrics. It is evident that our approach significantly outperforms 

the conventional method in all of these aspects. The scale bar in (a) is 25 μm. 

 

 

 

 

 

 

 

 



Supplementary Note 1: 

 

The proposed NMC particle segmentation method consists of procedures for training and 

inference. In total, 221 nano-tomographic slices of NMC composite electrodes are manually 

labeled. These human-labeled images are treated as the ground truth. Among them, 155 images 

were used for training and validating the model and 66 images were held out for testing. Additional 

data augmentation step (random cropping, flipping, rotation and image scaling) was taken to 

increase the diversity of data available for training models, without actually collecting new data. 

The trained machine-learning model was then applied to the current dataset of monolayer NMC 

electrode. Note that the identification and segmentation step was done for each slice separately, 

and the 3D particles were reconstructed by linking the slices at different depths of the volume 

through the Hungarian maximum matching algorithm.  

The Mask R-CNN model we are using in this study relies on a region proposals which are 

generated via a region proposal network. It can be split up to four parts: 1) scan the images and 

extract features with feature pyramid network; 2) find interested regions at different scales; 3) 

detect and classify the targets; 4) generate instance masks for each particle. Suplementary Figure 

9a shows an example of the activation map during the detection process, which highlights the the 

particle-specific regions of the image. This activation map benefits the classification of each 

particle since the instance information is difficult to obtain directly from the intensities of the 

image. The binary cross-entropy loss function was used which measures how far away from the 

ground truth classes the prediction is for each of the particles. In total we train for 150 epochs 

using stochastic gradient descent with momentum of 0.9, starting with a learning rate of 0.001 and 

ending with a learning rate of 0.0001.  

Six typical evaluation metrics were used to assess the performance of detecting corrected 

segmented particles. They are Precision (a.k.a positive predictive value), Sensitivity (a.k.a recall), 

Jaccard, Dice, F measure and MCC (Matthews correlation coefficient). The results were compared 

with the traditional watershed algorithm and showed significant improvement. More specifically, 

the marker-controlled watershed segmentation was used, and the intensities were used to generate 

marker locations. Parameters were tuned to get the best prediction results. Overall, the machine-

learning model results in substantially better identification and segmentation of NMC particles. 

For instance, the trained model achieved precision and sensitivity of 92.2% ± 6% and 86.4% ± 5% 



on the validation dataset, while the traditional watershed algorithm gets 75.5% ± 22% and 55.2% ±

10%. The results are summarized in Supplementary Figure 9b. 

 

 

 

 

 

 


